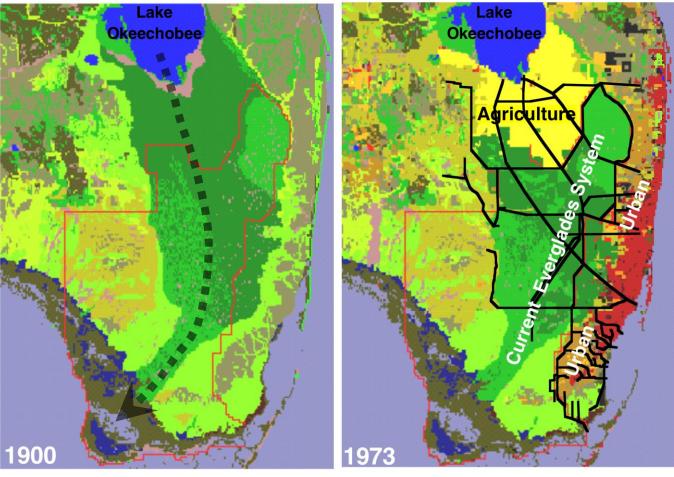

Model analysis of eutrophication constraints on an Everglades restoration project

H. Carl Fitz, Rajendra Paudel, Andy Loschiavo

2012 INTECOL

Ecological Landscape Modeling

http://ecolandmod.ifas.ufl.edu


Presentation:

- Context (some) Everglades issues
- Model design & performance, to address issues
- Model application Everglades Decompartmentalization
 - ? Modify water flows & loads -> eutrophication concerns ?
 - Answer no significant concerns for this project

Ecological Landscape Modeling

People surrounded the Everglades, which became fragmented by levees and canals, restricting water flows

A River of Grass

A Series of Impoundments

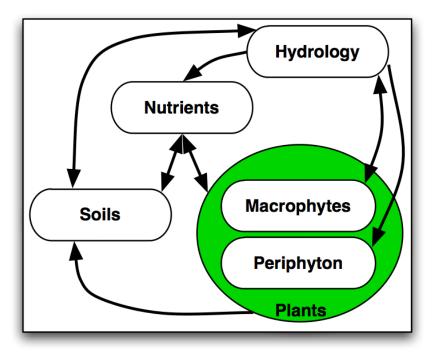
Ecological Landscape Modeling

http://ecolandmod.ifas.ufl.edu

Comprehensive Everglades Restoration Plan (CERP) Goals:

Restore the remaining Everglades

- ✓ Input more water
- ✓ Where it is needed,
- ✓ When it is needed…
- ✓ using CLEAN water
- ✓And multiple other goals....

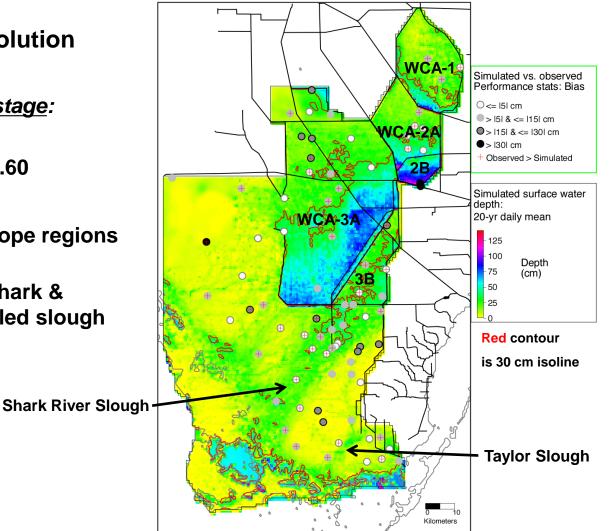

Complex spatio-temporal issues – use of models

- Water management
 - South Florida Water Management Model (SFWMM) used to design CERP; used to evaluate multiple CERP projects
 - Regional Simulation Model (RSM) 2nd generation model, now also used to evaluate multiple CERP projects
- Ecology/water quality
 - Everglades Landscape Model (ELM) used to evaluate ecology/water quality for CERP "DECOMP" project (and other restoration projects)

ELM Design: Integrating ecological interactions

- Ecosystem model, integrating dynamic processes of hydrology, biogeochemistry, & plant biology
- Arrows denote flows of carbon, water, & phosphorus, and information feedbacks among modules

Model Performance: 1981-2000, 500 m resolution ELM v2.8.4


Simulated vs. observed stage:

Median bias = 0 cm Median NS Efficiency = 0.60

Hydrologic gradients:

 water ponds in downslope regions of impounded WCAs

 deeper regions along Shark & Taylor sloughs, finer-scaled slough features

ELMreg500m v2.8.4

Ecological Landscape Modeling

ELM review

- National Research Council (2006, 2008, 2010)
 - Stressed overall need for integrated hydrologic, ecological, & water quality models for CERP evaluations
- Mitsch, Band, & Cerco (2007) internationally-recognized panel, review of ELM for application to CERP
 - Model is "...robust and will produce a unique contribution, with an integrated ecosystem paradigm, to understand and predict potential outcomes of Everglades restoration projects..."
- CERP Interagency Modeling Center review of ELM (2008)
 - "... IMC suggests using ELM as the primary water quality model..." for DECOMP
- ELM is Open Source, w/ comprehensive, hierarchical documentation
 - Peer-reviewed manuscripts in journals, books

ELM application:

Evaluating CERP WCA-3

Decompartmentalization

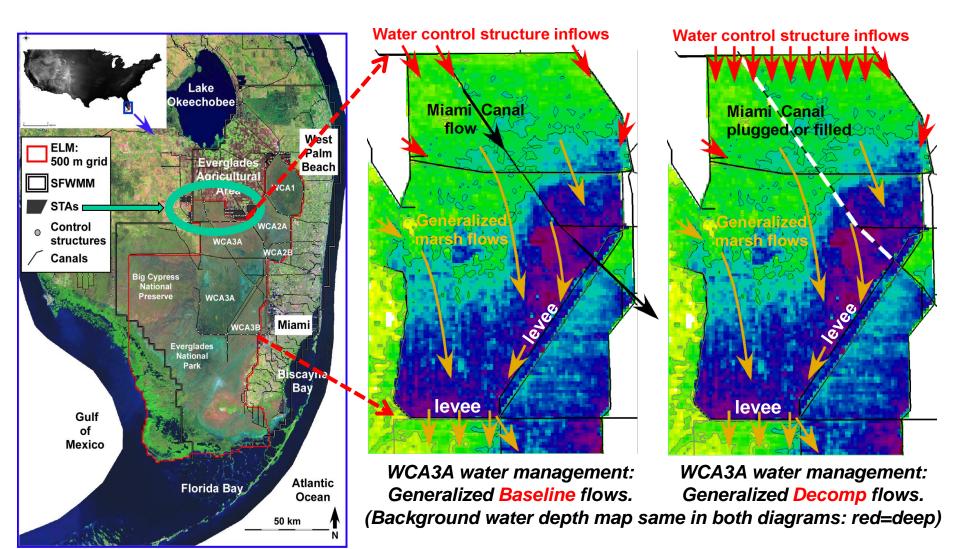
Project, Phase 1

February 2011 – 2012: Contracted by US Army Corps of Engineers to apply ELM in support of CERP "Decomp" Project, Phase 1

(Related model research publication) --

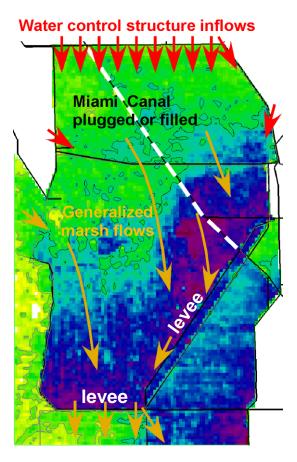
Fitz, H.C., G.A. Kiker, and J.B. Kim. 2011. Integrated ecological modeling and decision analysis within the Everglades landscape. *Critical Reviews in Environmental Science and Technology* 41: 517-547.

Lake Okeechobee West ELM: Palm 500 m grid Everglades Beach Agricultural SFWMM WCA1 Area STAs CA2A Control structures WCA3A A2E Canals **Big Cypress** National Preserve WCA3A 🌆 Miami WCA3P Everglade National Park liscayne Bav Gulf of Mexico Atlantic Florida Bay Ocean 50 km Ν



ELM application for CERP Decomp Phase 1 Project

- Water quality is a formal constraint on Project Objectives
 - § Project may not degrade water quality in currently-unimpacted areas
 - § Apply integrated hydro-ecological ELM to evaluate that constraint
- Hydrologic water management models drove ELM
 - § SFWMM v6.0 (~10 km² grid) provided regional flow boundary conditions
 - § RSM v2.3.1 (avg ~2 km² grid in WCA-3) used SFWMM inflows, applied water management rules to distribute water
 - § ELM v2.8.4 (0.25 km² grid) was driven by SFWMM and RSM (point) water control structure flows, simulating landscape/canal flows of water and phosphorus



Decomp Phase 1 Planning Alternatives

Decomp Phase 1 Planning Alternatives

Hydropattern restoration– distribute point inflow sources more widely

- Full spread of inflows along north boundary, or
- Combinations of less spread of inflows, or
- No action

Miami Canal modification – presence is flow barrier, and/or accelerates drainage

- Fill completely, or
- Fill partial (one or more sections), or
- Plugs multiple plugs along canal, or
- No action

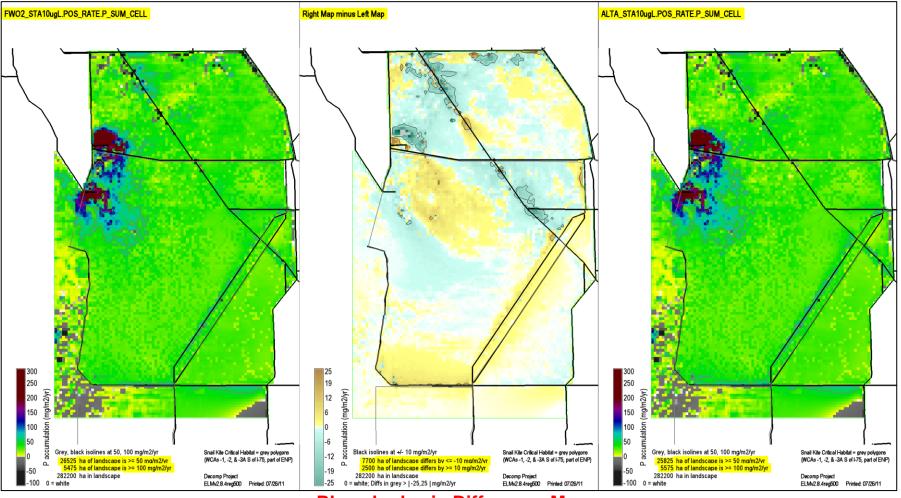
Future CERP projects will remove levees, input more water... towards restoration

Model setup & assumptions

- Water management
 - § 7 Alternatives (Alts): "A" "H"
 - § 2 Bases: Future WithOut (FWO), Existing Condition Base (ECB)
 - § *Common*: All were 36-year future simulations, 1965-2000 climate
 - § **Differences:** Infrastructure and operations varied among runs
- Water quality
 - § Common: All but ECB** simulations assumed 10 ug I⁻¹ P inflow concentration from STAs (Stormwater Treatment Areas)
 - § Common: All simulations have same (relatively high) P inflow concentrations from other basin sources
- Performance Measures/Indicators
 - § RSM: Many metrics used to evaluate hydrologic benefits of Alts relative to FWO base
 - § ELM: Eight metrics used to evaluate water quality/ecology of Alts relative to FWO base

** unused ECB assumed recent P inflow concentrations from STAs, overall mean 23 ug I⁻¹

ECological Landscape Modeling

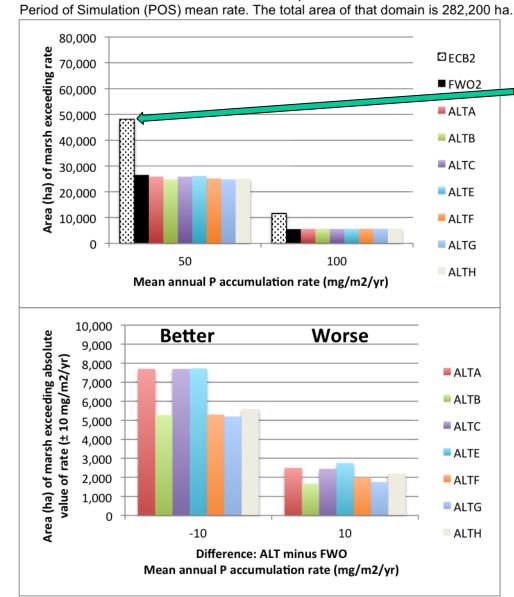

Primary Performance Indicator:

P accumulation rate

FWO_Base

AltA – FWO_Base

AltA


Blue shades in Difference-Map =

AltA less P accumulation than FWO_Base

Ecological Landscape Modeling

http://ecolandmod.ifas.ufl.edu

Simulated P accumulation rate in the Decomp PIR 1 domain considered in ELM.

Bases: ECB vs. FWO -- Relative to FWO, ECB had significantly more marsh area with excessive P accumulation (> 50 mg P m² yr¹)

Alts vs. FWO

-- None of the Alts (A-H)
showed meaningful differences
in eutrophication relative to
FWO (Base used in planning)

Conclusions

• Eutrophication risk

- § Relative to FWO base, no Alternative had meaningful overall differences in future eutrophication risk – but all Alts showed somewhat less risk than FWO
- **S** Localized spatial differences were found among Alternatives, including benefits of full backfill of Miami Canal (and to some extent, full-plugging of Miami Canal)
- § Hydropattern restoration features distributed ("diluted") P inputs along wide area, tending to reduce localized ecosystem eutrophication (compared to point inflows)
- § Alternative A, with Full Hydropattern restoration and complete backfill of Miami Canal, was one of the, if not the, preferred Alts regarding localized eutrophication risk – but all differences were small

Preferred Alternative

- § RSM showed that most hydrologic benefits occurred in northern WCA-3A, supported by ELM hydro-ecological results
- § Project Development Team used RSM and ELM results to inform the evaluations of best performing plans for Decomp Phase 1
- http://ecolandmod.ifas.ufl.edu/Projects/
 - **§** History-matching ELM performance documentation
 - **§ ELM Decomp application assumptions, inputs, and results**

Ongoing application/research

۲

CERP Aquifer Storage & Recovery (ASR)

- Evaluate downstream Everglades sulfate distributions under different ASR configurations/operations

Florida Coastal Everglades - LTER

- Integrate recent multi-disciplinary research results into ELM
- Apply ELM as landscape framework for multi-model assessments of climate change & sea level rise

Water resource sustainability en España

 Develop ecological-economic module to assess land & water management practices in the Segura basin (with N. Guaita, others)

•

